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1. Introduction 

Rubidium (Rb) gas cell frequency standards display a wide range of performance characteristics. At 
one extreme are standards developed for high performance applications, such as Global Positioning 
System (GPS) satellites. Such standards weigh 12 lb, have volumes of nearly 230 in.3, and display 
frequency stabilities given by the expression Sy(t) at 3 x 10"1211/2 + 1.5 x 10"14 (Refs. 1,2). At the 
other extreme are miniature commercial standards, some occupying volumes as small as 13 in. , 
weighing only 3/4 lb, consuming approximately 8 W under steady state conditions, and costing less 
than $2000 (Ref. 3). Military and commercial satellites have growing needs for accurate frequency 
and time information. The new generation of miniature Rb frequency standards (MRFS) now being 
produced by a number of different manufacturers, or perhaps vacuum-optimized variants, appears 
attractive for future space applications where size, weight, and power considerations are of extreme 
importance.* Thus far, though, performances of the MRFSs, in particular, their frequency 
stabilities, do not match those of the high performance devices. While the white noise portion of 
the Allan deviation may be similar for averaging times less than -1000 s, beyond that point, when 
the devices are operated in a normal laboratory environment, random walk of frequency noise is 
often observed. From the perspective of many timekeeping applications, this noise is undesirable 
and could limit device utility. The focus of the current study has been to understand the origins of 
the random walk of frequency noise. Specifically, is the noise a result of external perturbations, or 
is it a manifestation of frequency variations originating from within the MRFS, e.g., instabilities in 
the intensity of the Rb discharge lamp as implemented in the compact design (Ref 4)? Also, does 
the compact nature of these standards in any way fundamentally limit their long-term frequency 
stabilities? 

'Additional manufacturers of the miniature Rb atomic frequency standard include: Ball Corporation, Efratom Time and 
Frequency Products (models FRS-C and FRS-N), EG&G Frequency Products (model RFS-10), and TEKELEC 
NEUCHATEL TIME (model MCFRS-01). 



2. Experimental Procedure 

To address the issue of random walk of frequency noise, experiments were performed on two 
Frequency Electronics, Inc. (FEI), FE-5650A Rb atomic frequency standards. These standards are 
MRFSs with size, weight, and power requirements as called out in the introduction. Since 
environmental effects are a potential source of long-term frequency instabilities, the MRFSs were 
operated while attached to a thermal plate in a vacuum chamber during periods of frequency 
measurement. The experimental apparatus is shown in Figure 1. The standards were not designed 
for vacuum operation. Therefore, it is not surprising that attempts to operate the MRFSs under 
vacuum resulted in poorer frequency stabilities and frequency drift rates far poorer than attempts to 
operate them under ambient atmospheric pressure. Consequently, the MRFSs were operated 
primarily at atmospheric pressure in the sealed vacuum chamber. The chamber was sealed at the 
beginning of each frequency measurement period to remove any effects of variations in atmospheric 
pressure due to weather. The temperature of the thermal plate was continuously monitored during 
the frequency measurement periods through measurement of the resistance of a precision 
thermistor. Tests were performed on the MRFSs over 9 months. Allan variances were extracted 
from frequency data using the method of overlapping samples (Ref. 5). Prior to the Allan variance 
analysis, a least-squares process was used to remove linear frequency drift. The frequency 
measurement system employs a Hewlett-Packard (HP) 5061B-004 cesium beam frequency standard 
as its frequency reference. Consequently, the measured Allan standard deviation white noise 
behavior is limited to the stability ofthat standard, which is approximately 8 x 10"12/t1/2, with t being 
the frequency averaging time. 
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Figure 1.    Experimental apparatus described in the text that is used to measure 
the performance of an MRFS. 



3. Results 

Over the testing period, the frequency drift rates were seen to monotonically decline. During the 
first few days of operation after turn-on of the standard, drift rates of approximately 4x10' /day 
were observed. After 1 month of operation, atypical frequency drift rate was 7 x 10'12/day, 
decreasing to 2 x 10"12/day after 6 months, and reaching 1 x 10"12/day after 9 months of operation. 
Representative sets of Allan variance computations are reported in Figure 2. In this figure, the 
Allan standard deviation, ay(t), is plotted as a function of averaging time, t, for the MRFS 
operating in air. For reference, we show the typical performance required of an atomic frequency 
standard that is to be used in a communications satellite system (SATCOM). This desired 
SATCOM performance is indicated by the dashed curve. Squares correspond to the MRFS 
operating at room temperature, without any active stabilization of the thermal plate in the vacuum 
chamber. Clearly, under these conditions, the MRFS would not achieve the desired SATCOM 
performance. However, as indicated by the circles in Figure 2, stabilizing the temperature of the 
MRFS improves its performance, and would allow the device to just meet the SATCOM 
specifications. 

The measurements clearly show the importance of external temperature fluctuations on the 
frequency stability of the compact Rb atomic standard. Under tight temperature control, even this 
inexpensive device can display very good frequency stability for periods of 104 s and beyond. 
Because maintaining stringent temperature control is often not practical, we investigated correcting 
the recorded output frequency by making use of the measured external temperature. In this 
investigation, a linear relationship between MRFS frequency and thermal plate temperature was 
computed for each frequency measurement period, using a least-squares procedure. The frequency 
data were then corrected for the effects of temperature using the estimated temperature coefficient 
and the Allan variance computation performed. Interestingly, for the correction to be most 
effective, an 1800 s lag had to be introduced between the thermal plate temperature and the MRFS 
frequency. The triangles in the Figure 2 correspond to the expected performance of a "smart" 
MRFS that is temperature compensated using the foregoing procedure. The inferred smart MRFS 
performance is quite good, easily exceeding the desired SATCOM frequency stability. Of course, 
the stability of the temperature coefficient would have to be analyzed to fully validate the concept 
of a smart MRFS that self-corrects for the effects of ambient temperature. 

The role temperature fluctuations play in the long-term frequency stability is further emphasized in 
Figure 3. On several occasions during the testing period, the ambient laboratory temperature was 
unusually stable. This stability resulted in the temperature control maintained by the bath being 
very tight, less than +/-0.04°C. Outstanding Allan variance behavior was observed, approaching 5 
x 10'1 at an averaging time of 30,000 s. The results for the MRFSs operating under atmospheric 
pressure and various levels of temperature control are summarized in Table 1. 

Table 1. Performance Results for MRFS. The Allan deviation is j ?iven by a(t) = [a2/x + b2x]1/2. 
Temperature Variations 

(+/-°C) 
a* b Minimum Observed Value of 

Allan Deviation 

3 (ambient temp, variations) 7.5 x KV12 4 x 10-15 2 x 1013 

0.15 7.5 x Kr12 1 x 10-15 1 x 10-13 

<0.04 7.5 x IQ"12 3 x IQ'16 5 xlu-14 

♦White noise value is limited by the frequency stability of the measurement system frequency reference 
(HP 5061B-004 cesium beam frequency standard). 
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Figure 2. Experimental results of the MRFS's performance in terms of the Allan standard deviation, ay(x), VS 
averaging time, x. [The lower the curve of ay(t) vs x, the better the clock's timekeeping ability, f In the 
figure, squares represent the MRFS operating in air at room temperature, circles represent the MRFS 
operating in air with clock temperature stabilized by the thermal plate, triangles represent "smart" MRFS 
performance in air with clock temperature stabilized by the thermal plate. The dashed line corresponds 
to frequency stability desired for satellite communications applications, and is only meant for reference 
purposes. 
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Figure 3. MRFS frequency stability during a period of extreme temperature stability. The dashed line results 
from a linear fit of the log-log plotted data for averaging time less than 4000 s. The slope of the 
resulting line is 0.50, consistent with white frequency noise. 



While the MRFS under test was not specifically designed for vacuum operation, it was still of 
interest to ascertain how a commercial, off-the-shelf (COTS) MRFS would perform under 
spacelike conditions. The FEI design does have tapped screw holes in the main frame of the 
MRFS, allowing it to be bolted to the thermal control plate, ensuring good thermal conduction 
and preventing overheating. Figure 4 shows the performance of the MRFS in vacuum 
(squares) and in air (circles). In both cases, the temperature of the MRFS was stabilized by the 
thermal plate in the vacuum chamber. Again, the dashed curve in the figure corresponds to the 
desired performance for a SATCOM atomic clock. As the data clearly demonstrate, the 
performance of the COTS MRFS in vacuum is poor compared to its performance in air. As 
space missions, by definition, require operation in vacuum, the data of Figure 4 would preclude 
the use of this COTS MRFS in the SATCOM application. Moreover, while the smart MRFS 
concept improves the MRFS's performance in vacuum, it still does not meet the desired 
SATCOM level of performance. One explanation for the vacuum problem concerns the 
MRFS's thermal pathways. The data of Figure 2 clearly demonstrate the importance of 
temperature stability to Rb atomic clock operation. It should be noted, though, that the 
thermal pathways for the COTS MRFS were not designed for operation in space. In vacuum, 
the COTS MRFS's thermal pathways are altered, thereby creating a potentially greater 
sensitivity of the MRFS to thermal fluctuations. An alternate explanation for the vacuum 
problem postulates an influence of vacuum on the elastomers that hold the various physics 
package components in place. A change in the elastomer properties could cause a greater 
sensitivity of the MRFS to vibration. The vacuum-induced elastomer change could also shift 
the position of physics package components, thereby creating a greater sensitivity to 
microwave power or magnetic field fluctuations. Whatever the explanation for the vacuum 
problem, it is an issue of COTS MRFS device fabrication rather than device physics, and 
should not preclude the use of an appropriately modified MRFS in space. In fact, the space 
environment may be ideal for MRFS operation, as thermal control need be established only on 
the surface mounted the spacecraft. 
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Figure 4. Experimental results of the Rb COTS clock's performance in terms of the Allan standard 
deviation. In the figure, squares represent operation in vacuum; circles represent operation in 
air. In both cases, the temperature of the clock was stabilized to +/-0.15°C by the thermal 
plate. Again, the dashed line corresponds to the desired SATCOM frequency stability and is 
only meant for reference purposes. 



4. Conclusions 

In conclusion, we have examined the timekeeping capability of an MRFS. We find that a very 
significant contributor to the random walk of frequency noise displayed by this standard is its 
sensitivity to ambient temperature. When the thermal environment is controlled, the unit 
displays extremely good frequency stability. Although the COTS nature of the MRFS 
precludes its direct use in the vacuum of space, the vacuum problem should be amenable to 
correction, as demonstrated by the fact that small (though not miniature) Rb clocks are already 
used in space systems. The results demonstrate that the timekeeping capability of MRFSs can 
meet space mission requirements by adequately controlling their ambient temperatures. While 
our testing was performed on a single MRFS design, we have no reason to believe similar 
levels of performance could not be obtained with other devices. The relationship between the 
statistical measure of MRFS frequency stability (i.e., the Allan standard deviation) and the level 
of ambient temperature fluctuations, suggests that a smart MRFS, employing microprocessor- 
based temperature compensation, could be fabricated and could have the potential to lessen 
temperature control requirements. Finally, the space environment might very well reduce the 
complexity of temperature control, as temperature isolation would only have to be actively 
maintained along the mounting surface of the MRFS. 
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